Sunday, March 24, 2019

Is tramadol and tapentadol the same?

Both tramadol and tapentadol are phenylpropanolamine .. In fact,tramadol is pharmacologically a “partial agonist.In contrast, tapentadol is a full mu agonist with a binding affinity 18 times less than that of morphine, but is only 2- to 3-times less potent than morphine.

In 1995, Janssen Pharmaceutical released a chemical entity known as tramadol (Ultram). In 2009, Janssen released a similar entity, tapentadol (Nucynta), as a Schedule II analgesic that was the first new opioid entity with controlled substance status approved by the U.S. Food and Drug Administration (FDA) in several decades. The drug was sold to DepoMed in April 2015.1 In 2014, the Drug Enforcement Administration (DEA) officially changed tramadol from a schedule V to a schedule IV drug.1 Both tramadol and tapentadol are phenylpropanolamine .
Both tramadol and tapentadol inhibit the reuptake of norepinephrine from the synaptic cleft, which has been shown to have analgesic properties separate from opiate activity.2,4,5Tramadol has been shown to inhibit serotonin reuptake, but tapentadol has not been shown to have any therapeutic serotonin activity.3
Despite this, the FDA-approved labeling requires both compounds to include the standard warning for risk of seizure and serotonin syndrome—especially when they are taken with antidepressants, other opioids, or neuroleptics, or are used in patients with a history of epilepsy or head injury.6,7
Without a doubt, tapentadol is far from a “glorified tramadol,” which has been suggested to one of the authors (JF) by many medical and pharmacy colleagues. But an important question remains: Are all of these warnings warranted for tapentadol?
Tapentadol’s Metabolism
Tapentadol is metabolized hepatically by Phase 2 pathways, primarily conjugating with glucuronic acid to form glucuronides, and by a minor Phase 1 oxidative pathway through cytochrome P (CYP) 2C19 (13%) and CYP2D6 (2%) enzymes.2,6 The terminal half-life of tapentadol is approximately 4.25 hours, and it is excreted through the kidneys.6,8 This means that tapentadol has no active metabolites, and, therefore, possesses less risk of drug-drug and cytochrome P450 interactions.3,9
In contrast, tramadol is metabolized by CYP2D6 and CYP3A4, with 2D6 producing the O-demethylated metabolite (M1) that has more analgesic properties than tramadol itself but interestingly doesn’t impact the pain relief.2,10-12 Here’s why: Although M1 is a more potent analgesic than tramadol, the metabolite has more difficulty passing into the central nervous system (CNS).3Additionally, as the dose of tramadol is increased, so too is the M1 metabolite; however, the ratio of tramadol to M1 entering the CNS increases. This means that more of the weaker parent compound binds to the mu receptors.2
If a patient taking tramadol is classified as a “poor” metabolizer of 2D6 or is taking 2D6 inhibitors, it can result in decreased analgesia and metabolism—20% higher blood concentration and 40% decreased M1 compared with “extensive” metabolizers (ie, normal metabolic rate).7,12
Common 2D6 inhibitors include citalopram, doxepin, escitalopram, fluoxetine, paroxetine, and sertraline; common 3A4 inhibitors include amiodarone, amlodipine, cimetidine, ciprofloxacin, clarithromycin, diltiazem, erythromycin, and fluoxetine.6,7,11,13-16

No comments:

Post a Comment